Synthetic Exploitation of the Ring-Opening of 3,4-Dinitrothiophene. Part 3. Access to 1,4-Diaryl- and 1,4-Dialkyl-2-nitrobutanes

Carlo Dell'Erba, Marino Novi,* Giovanni Petrillo and Paola Stagnaro

Istituto di Chimica Organica dell'Università, C.N.R. Centro di Studio sui Diariloidi e loro Applicazioni, Corso Europa 26, I-16132 Genova, Italy

Abstract: 1,4-Diaryl- and 1,4-dialkyl-2,3-dinitro-1,3-butadienes la-i are smoothly converted, in MeOH or MeOHdioxane, to the corresponding 1,4-disubstituted 2-nitrobutanes 4a-i by borohydride supported on ion-exchange resins.

In the frame of a research project aimed at the exploitation of 3,4-dinitrothiophene as a synthetic tool via the ring-opening product 1,4-bis(diethylamino)-2,3-dinitro-1,3-butadiene, we recently reported on a useful route to 1,4-diaryl- or 1,4-dialkyl-2,3-dinitro-1,3-butadienes 1.1.2 In continuation of such studies, we have investigated the reactions of 1 with polymer-supported borohydride reagents; such reduction method, successfully applied to the transformation of 1-nitroalkenes into the corresponding nitroalkanes,3 appeared particularly convenient because of the mild reaction conditions and of the simple operative procedures. A point of interest in this research was to ascertain whether the analogies in reactivity between dinitrobutadienes 1 and 1-nitroalkenes could be extended to the selective reduction of the two activated carbon-carbon double bonds of 1: actually any formed 2,3-dinitrobutane 2 was expected to hardly survive experimental conditions and the outcome of the present reactions⁴ consistently has been an efficient formation of nitroalkanes 4 most likely via nitrous acid elimination from 2 to 2-nitro-2-butenes 3 and eventual reduction of the latter.6

Examination of the results collected in Table 1 shows that the yields of **4** are generally good but for **4g**: actually, in spite of various attempts to optimize the procedure, the yield remained moderate, possibly due to

R =	Product	m.p. (°C)	Yield (%) a	Conditions ^b	
-h1	40	18 1 18 7	76	M 10 mM 12 A 400 1 0h	
pnenyi	48	02 6 04 5	66	M D 6 m M I D 4000 3 0 h	
I-naphtnyl	40	03.0-04.3	00	M-D, 0 IIIN, IKA400, 5.01	
l-naphthyl	4b ·		· 79	M-D, 6 mM, A26, 1.5h	
2-thienvl	4c	34.8-35.2	75	M, 15 mM, IRA400, 1.5h	
2-MeC ₆ H ₄	4d	86.8-88.4	75	M-D, 10 mM, IRA400, 2.5h	
4-MeC ₆ H ₄	4e	79.1-80.6	89 c	M-D, 15 mM, IRA400, 3.5h	
4-MeC6H4	4e		99 c	M-D, 15 mM, A26, 2.0h	
4-MeOC ₆ H ₄	4f	100.3-101.7	93 c	M, 12 mM, IRA400, 3.0h	
Et	4g	oil 8	45 c	M, 20 mM, IRA400, 1.0h	
Et	4g		53 c	M, 20 mM, A26, 1.0h	
Bun	4h	oil	72	M, 20 mM, A26, 1.0h	
c-C ₆ H ₁₁	4i	40.9-41.4	91 c	M, 15 mM, A26, 2.5h	

Table 1.	Synthesis of 1	.4-Diarvl- or 1	.4-Dialkvl-2-n	itrobutanes 4a-i	from of	Dinitrobutadienes 1a-i.
----------	----------------	-----------------	----------------	------------------	---------	-------------------------

a) Yields of isolated products purified, unless otherwise stated, by chromatography on silica-gel column. Satisfactory analytical data and consistent ¹H NMR spectra were obtained for all compounds 4.7 b) Solvent (M: methanol, M-D: methanol-dioxane), concentration of the substrate, kind of ion-exchange resin (Amberlite® IRA 400 or Amberlyst® A26, borohydride forms) and reaction times are reported. c) Yield of crude reaction product essentially pure by ¹H NMR.

some volatility of the nitroalkane. Under equivalent conditions, the polymer-supported borohydride reagent prepared with Amberlyst® A26 gives better results (more satisfactory yields with shorter reaction times) than that prepared with Amberlite® IRA400: the higher reactivity of the former reagent has already been observed in selective reductions of α , β -unsaturated carbonyl compounds.⁹

In conclusion the obtained results indicate that the approach herein constitutes an attractive route to nitroalkanes **4**, a class of compounds whose potentiality in synthesis is well documented.¹⁰ Researches are in progress in order to extend the synthetic scope of the selective reductions of 2,3-dinitro-1,3-butadienes.

Acknowledgments. Financial support by M.U.R.S.T. (Roma) is gratefully acknowledged. We thank Miss A.M. Canuti for her skilful contribution.

REFERENCES AND NOTES

- 1. Part 1: Dell'Erba, C.; Mele, A.; Novi, M.; Petrillo, G.; Stagnaro, P. Tetrahedron Lett. 1990, 31, 4933.
- 2. Part 2: Dell'Erba, C.; Mele, A.; Novi, M.; Petrillo, G.; Stagnaro, P. Tetrahedron 1992, 48, 4407.
- 3 Goudgaon, N.M.; Wadgaonkar, P.P.; Kabalka, G.W. Synth. Commun. 1989, 19, 805.
- 4. In a typical procedure the dinitrobutadienes 1 (2 mmol) and MeOH (100 ml) were magnetically stirred in an Erlenmeyer flask and at room temperature; depending on the solubility of the substrate more MeOH (or dioxane) was added in order to obtain a homogeneous solution whose final concentration is reported in Table 1. Borohydride exchange resin⁵ (3 g) was added, the flask stoppered, and stirring continued at room temperature following the disappearance of the starting material by TLC. A simple filtration followed by rinsing of the resin with methanol and evaporation of the filtrate under reduced pressure gave essentially pure 1,4-diaryl- and 1,4-dialkyl-2-nitrobutanes 4.
- Borohydride forms of Amberlite ® IRA400³ and of Amberlyst ® A26^{5a} were prepared according to literature. (a) Weber, J.V.; Faller, P.; Kirsch, G.; Schneider, M. Synthesis 1984, 1044.
- Signals attributable to vinyl hydrogens of possible intermediates 3 have been detected in the ¹H NMR spectra of crude mixtures of reactions stopped before completion.
- 7. With the obvious exception of the aromatic hydrogen absorptions, the ¹H NMR pattern of 4a is typical of 1,4-diaryl-substituted 4: δ(CDCl₃) 2.05 (1H, m), 2.54 (1H, m), 2.65 (2H, m), 3.03 and 3.27 (1H each, AB of ABX, J_{AB} 14.1 Hz, J_{AX} 8.5 Hz, J_{BX} 6.0 Hz), 4.70 (1H, m), 7.12 (4H, m) and 7.26 (6H, m).
- 8 Asinger, F.; Geiseler, G.; Hoppe, M. Chem. Ber. 1957, 90, 114.
- 9. Sande, A.R.; Jagadale, M.H.; Mane, R.B.; Salunkhe, M.M. Tetrahedron Lett. 1984, 25, 3501.
- 10. Rosini, G.; Ballini, R. Synthesis 1988, 833.

(Received in UK 8 June 1992)